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a b s t r a c t 

Remote work has increased the demand for housing and changed the demand for the lo- 

cation of that housing. Because housing supply is heterogeneous across space and more 

elastic in the long-run, the effects on rents and populations may differ over time. We use 

the lens of a spatial housing model with heterogeneous housing supply elasticities to iden- 

tify the housing and location demand changes from 2020–2022, and show that the same 

shocks will have different effects in the long run. Even though rents and prices increased 

significantly in the short-run, we estimate that in the long-run, increased housing demand 

will increase rents by only 1.8 percentage points, and that changing location demand will 

decrease rents by 0.3 percentage points, with a more negative impact on cities in which 

CPI is measured and cities that were initially expensive. 
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1. Introduction 

This paper studies the effects of remote work on hous-

ing affordability and inflation. We argue that the long-run

impacts of remote work on housing affordability are likely

to be different than the short-run changes because hous-

ing supply is more elastic in the long-run and heteroge-

neous across space. We consider two ways that remote

work changes housing demand. First, demand shifts away

from the central business districts of large cities, where
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housing is inelastically supplied. Because relative demand 

increases in areas with inelastic housing supply, housing 

costs fall on average in the long run. Second, remote work 

increases the demand for space. This force raises the cost 

of housing in both the short and long run, but with smaller 

long-run effects because housing supply is more elastic. 

Understanding the long-run effects is important in part 

because the short-run effects of remote work have been so 

large. Real rents in the United States rose by eight percent 

and real house prices rose by over twenty percent from 

2020 to 2022, and these changes have been heterogeneous 

across space. A growing body of literature has argued that 

many of these short-run changes are due to remote work. 1 
1 See for example, Ramani and Bloom (2021) , Gupta et al. (2021) , 

Brueckner et al. (2021) , and Mondragon and Wieland (2022) . 

Delventhal and Parkhomenko (2020) and Davis et al. (2023) also 

study the rise of remote work on house prices in a spatial equilibrium 

model. 
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If the long-run effects are different than the short-run ef-

fects, as we argue, this means that there are still substan-

tial changes to come for housing markets. 

We study the net effect of these forces using a model

of the U.S. housing market designed to capture housing de-

mand in the short- and long-run, as well as differences in

short- and long-run housing supply elasticity. Building on

Howard and Liebersohn (2021) , households have demand

for a quantity of housing and demand for living in a lo-

cation, in this case, a county. Locations have a site-specific

long-run housing supply elasticity. We derive formulas for

rent and population changes in each location as a func-

tion of shocks to housing demand and the demand to live

in each location, given supply elasticities and the two de-

mand elasticities. 

We use this model to calculate the long-run effects

of remote work in two steps. We first invert the model

to calculate the housing demand shocks and location de-

mand shocks caused by remote work using observed rent

and population changes from 2020–2022. Backing out the

shocks requires assumptions about housing demand elas-

ticity which we take from the literature. Importantly, we

assume that the housing supply is inelastic in the short

run. To confirm that our location demand shocks are in-

deed related to remote work, we validate that the shocks

for each county are correlated to local remote work mea-

sures from Dingel and Neiman (2020) . 

In the second step, we consider a long-run version of

the same model where housing is supplied with a long-

run elasticity specific to each region. We then consider the

housing and location demand shocks from the first step

and ask what effect these shocks would have on aggregate

rents in the long run. We show in the model that there

are two forces that govern house prices and derive sim-

ple formulas for them. The first force is the effect of the

changing demand for where people want to live, which we

call the location demand channel. We calculate the mag-

nitude of the location demand channel by feeding in the

location demand shocks from the first step, assuming that

the housing supply elasticity in each region equals its long-

run historical levels. Under our preferred calibration, the

shift in location demand to more elastic areas will cause a

0.3 percentage point decline in rents in the long run. 2 

In addition to changing where people wanted to live,

remote work raised demand for housing in general which

caused rents to rise. We call this second force the housing

demand channel. Similar to the location demand channel,

we calculate the size of the housing demand channel by

feeding the implied housing demand shocks into formulas

derived from the long-run version of the model. The es-

timates shows that the long-run effects of greater housing

demand on rents are less than one-half of the short-run ef-

fects. The precise amount of the housing demand shock is

somewhat uncertain, because housing demand rose from
2 In Section 6.4 , we show that our 3-period model of rents is nested in 

an infinite-horizon model that includes house prices. The long-run impli- 

cations for rents and house prices are the same in those models, so when 

we discuss implications for the long-run effects on rents, those are the 

same as the long-run effects on house prices. 
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2020–2022 for reasons other than remote work. 3 Under 

the conservative assumption that the entire increase in de- 

mand for housing quantity was due to remote work, we 

estimate that the long-run impact of the housing demand 

channel is a 1.8 percentage point increase in rents. Since 

the short-run effect is even larger, this implies a decline 

of about 5.2 percentage points from the short-run to the 

long-run. 

The net effect of remote work on housing costs is the 

sum of the effects coming from housing demand and lo- 

cation demand. Taken together, the long-run effect on real 

rents will be about one-fifth of the short run effect on av- 

erage. We also show that the net effects of remote work 

vary across space. For the five most expensive U.S. cities, 

the net effect of remote work will be a fall in housing 

costs. 

Our results also have implications for the housing com- 

ponent of the consumer price index (CPI). Because the CPI 

is a measure developed for urban consumers, the rental 

component of CPI is calculated for 87 urban areas, not the 

entire country ( Bureau of Labor Statistics, 2013 ). These ur- 

ban areas experienced a relative decline in location de- 

mand versus the rest of the country, so both the short- and 

the long-run effects of remote work on CPI-rents are more 

negative than the effects on the average rent. We calculate 

the effect on the housing component of CPI by considering 

the model’s implications for the areas that are measured 

for CPI-rents, finding that the effect of location demand on 

CPI counties is about −1 percentage points. 

The housing demand channel is an example of the 

Le Chatelier (1884) principle in that the long-run hous- 

ing supply is more elastic than the short-run, leading to 

smaller effects on prices in the long-run. The location de- 

mand channel has a bigger impact because the average 

housing supply becomes more elastic when people choose 

to demand housing in places that are more elastic. For this 

channel, the distinction is not about the short- versus the 

long-run, but rather the location that people are choosing. 

Two stylized facts motivate the model assumptions and 

structure. The first stylized fact is that real rents grew by 

8 percent, with most of the change occurring over a six- 

month period in mid-2021. The rise in real rents appears 

in a variety of data sets and was a major driver of inflation 

over the same time period. The second stylized fact is that 

populations and rents grew in areas where housing sup- 

ply has historically been more elastic. Looking within ur- 

ban areas, populations fell and rents grew by less in cen- 

ter cities, as compared to the suburban and exurban ring 

surrounding them. Rents and populations also grew less in 

the surrounding countryside, leading to what Ramani and 

Bloom (2021) call the “Donut Effect.” The fact that demand 

fell in supply-inelastic areas, and rose in supply-elastic ar- 

eas, motivates us to study the long-run effects of regional 

demand changes on rental affordability. 

Throughout, we compare the effects of remote work to 

a counterfactual where location and housing demand did 

not change. This means that our estimates are conservative 
3 Other reasons include stimulus payments, low interest rates, and 

greater value of home consumption due to the pandemic. 
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5 Schubert (2022) studies similar spillovers across housing markets 

through migration but does not focus on remote work. 
6 They do two long-run counterfactuals, one in which housing supply 

is perfectly elastic, and one in which housing supply has elasticities cal- 

ibrated based on the Baum-Snow and Han (2022) . In their paper, they 

consider the long-run to be ten years, and so do not adjust the elastici- 

ties as we do here. 
7 In the short-run, their model generates a 16 percent increase in rents 

in the county containing the central business district, which they call 

Zone 1, and a 27 percent increase in rents in other counties in the 

city, which they call Zone 2 (these numbers are calculated from the 

rents in Table 8 from their paper). In the long-run with Baum-Snow and 

Han (2022) elasticities, rents increase by 13 and 23 percent, respectively. 

With perfectly elastic housing supply, the long-run rents return to their 

pre-pandemic baseline. 
8 In addition, this means that our model considers effects that remote 
relative to a counterfactual where location demand contin-

ued to shift towards inelastic places, as it had done in the

previous two decades ( Howard and Liebersohn, 2021 ). 

In the later part of the paper, we expand our model

to include a notion of house prices as the present dis-

counted value of rents. We find that cross-sectional regres-

sions of short-run house price changes on short-run rent

changes give similar coefficients in both the model and the

data, lending credibility to the long-run predictions of our

model. 

The structure of the model allows us to easily calculate

the long-run effects of remote work under a variety of pos-

sible scenarios: first, we consider alternative assumptions

about the effects of remote work on housing demand, and

second, we consider different assum ptions about the future

of remote work. Since the location demand channel scales

linearly with the size of the shock, an increase in remote

work will raise the location demand channel proportion-

ally to our baseline estimate. Finally, we consider alternate

assumptions about how remote work might affect where

people decide to move. 

1.1. Literature review 

Prior to the COVID-19 pandemic, only a few pa-

pers considered the implications of remote work.

Blinder (2005) emphasized the potential tradability

of service jobs through improved telecommunications.

Ozimek (2019) argued that occupational tradability pre-

dicted domestic remote work and not job loss. Dingel and

Neiman (2020) extended this research by calculating the

remote work potential for jobs across cities, introducing

occupational remote-ability scores that are widely used

today. 4 

The rise of remote work during the pandemic sparked

increased research interest, particularly regarding its im-

pact on the housing market. Within cities, remote work

shifted housing demand from high-density, high-cost ar-

eas to lower-density, lower-cost locations ( Davis et al.,

2023; Ramani and Bloom, 2021; Gupta et al., 2021; Brueck-

ner et al., 2021 ). Remote work also shifted housing de-

mand across cities, moving demand from high produc-

tivity, high cost, high density places towards lower pro-

ductivity, lower cost, lower density places ( Davis et al.,

2023; Ozimek, 2022; Althoff et al., 2022; Liu and Su, 2021;

Brueckner et al., 2021 ). Remote work also increased the

overall demand for housing in the short-run ( Davis et al.,

2023; Mondragon and Wieland, 2022; Ozimek and Carlson,

2023 ). 

We build on this research by considering the long-run

implications of remote work for aggregate housing costs

using a spatial equilibrium model. While existing liter-

ature has predominantly focused on cross-sectional de-

mand changes during the pandemic, our contribution lies

in studying the aggregate long-term effects of remote work

on housing affordability. To understand these implications,
4 Alongside this, a large literature estimates the share of jobs that are 

done remotely, including Barrero et al. (2020) , Mertens et al. (2022) , 

Brynjolfsson et al. (2020) , Ozimek (2020) , Bartik et al. (2020) , 

Mongey et al. (2021) . 
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we propose a model of the aggregate housing market that 

incorporates the interaction of local markets through mi- 

gration. 5 Our results show that the effects of remote work 

can be quite different in the long run as compared to the 

short run. 

Another line of research uses quantitative spatial equi- 

librium models to investigate remote work. These models 

incorporate rich features such as spatial spillovers and a 

model of production. In contrast, our more-parsimonious 

model highlights the particular mechanism we have in 

mind and allows us to solve for sufficient statistics re- 

lated to those mechanisms. Davis et al. (2023) examine the 

productivity effects of remote work and highlight adop- 

tion externalities that contribute to its rapid increase. Like 

ours, their model considers the effects of remote work in 

the short-run and the long-run, where the long-run differ- 

ence is that housing supply is allowed to adjust. 6 While 

they consider many outcomes that we do not, their results 

on rents are qualitatively similar to ours: an increase in 

rents in the short-run, which is moderated in the long-run 

by the adjustment of housing supply. 7 Compared to their 

paper, our paper models each county individually instead 

of considering only two residential locations, allowing us 

to calculate counterfactuals for specific geographies. 8 Fur- 

thermore, we base our calibration on the short-run rent 

changes, allowing us to match the short-run exactly and 

only using the model to calculate the long-run. 9 Finally, 

our paper has a closed form solution for long-run rent 

changes which we think is helpful for understanding the 

economics of the effects of remote work on housing mar- 

kets, in particular the decomposition of the aggregate ef- 

fect into location demand and housing demand. 

Delventhal and Parkhomenko (2020) and 

Delventhal et al. (2022) estimate the welfare, price and 

mobility effects of the rise of work. Both papers feature 

endogenous agglomeration externalities and congestion 

costs, and Delventhal and Parkhomenko (2020) models 

the underlying reasons for increased remote work, dis- 

tinguishing technological from preference-based reasons. 

Both papers are focused on the long-run, but they find 

one similar result to ours, which could be interpreted as 
work may have in moving people across cities, rather than being only 

within-city moves. 
9 Perhaps because they focus on many other outcomes in addition to 

housing costs, they do not incorporate short-run rent changes into their 

calibration. Because of this, their predicted rent changes are substantially 

larger than ours in both the short-run and long-run. 
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a difference between the short- and long-run: when floor

space is not allowed to adjust to the remote work shock in

their model, residential rents are higher. 10 Given the focus

of their paper on the reasons for greater remote work

and the impressive quantitative features that shed light on

its implications for income and welfare, it is not possible

to decompose this exercise into a location demand or

housing demand channels as we do here. 

2. Data 

We create a panel of migration, real rents, house prices,

and other covariates at the county level. We use county-

level data because we want to capture changes in de-

mand in relatively narrow areas: for example, we hope

to measure differences between suburbs and center cities.

We face a tradeoff between granular geographic and data

coverage because geographic units narrower than counties

tend to have sparse data coverage. For example, ZIP code-

level rent data does not cover the entire country, and im-

puting it from higher geographic levels would lead to in-

accuracy. We chose counties as the constrained-best mix

of narrow geographies and data availability. 

In Howard and Liebersohn (2021) , we use long-run

housing supply elasticity from Saiz (2010) ; however, the

Saiz (2010) elasticities are disadvantaged in that they only

include MSAs and miss rich geographic variation within

MSAs. Instead, we use the census tract-level elasticities

in Baum-Snow and Han (2022) , which we aggregate to

the county level by taking the population-weighted av-

erage across tracts. 11 We use their preferred measure,

the quadratic finite-mixture-model elasticities of housing

square footage. 

The elasticities in Baum-Snow and Han (2022) are only

available in certain areas, meaning that some rural areas

are missing from the elasticity measure. Our model re-

quires elasticities for the entire country, so we impute

them by assuming that they are equal to the 95th per-

centile of elasticity in the data, which is about one. Hous-

ing supply elasticity is closely related to population den-

sity, and this value is roughly what we would expect based

on the population density of rural areas in the data. Ap-

pendix Figure A1 shows that the missing locations are at

roughly the 5th percentile of population density. 12 

In the cross-section, movements in rents and house

prices during this time are highly correlated.We focus on

rents for the quantitative exercises, so as not to worry

about changes in interest rates or expectations that may
10 Comparing columns 2 and 5 of Appendix Table G.1 of Delventhal and 

Parkhomenko (2020) , allowing floor space adjustment causes a 17% rela- 

tive decline in rents. 
11 Importantly, the Baum-Snow and Han (2022) elasticities are esti- 

mated using a ten-year interval, which may not correspond to the long- 

run. In section 4.2 , we discuss how we adjust the estimates to correspond 

to the long-run in Section 4.2 . 
12 Importantly, alternative assumptions about the housing supply elas- 

ticity of missing areas have almost no effect on the overall estimates be- 

cause implied rent changes in these areas are close to the national av- 

erage. Therefore the covariance of elasticity and rent changes, which we 

show is a central statistic, is not affected much by alternative assump- 

tions. 
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have affected home prices. At the same time, we believe 

our results can be useful for thinking about house prices 

in the long-run. 

Data on both prices and rents comes from Zillow: for 

prices, we use the Zillow Home Value Index (ZHVI) at the 

county level, and for rents, we use the Zillow Observed 

Rent Index (ZORI) which is provided to us by Zillow at the 

county level. The ZORI is the average of the middle quin- 

tile of rents in each location, created using a repeat-sales 

methodology similar to Ambrose et al. (2015) . It is then 

reweighted to be representative of the entire housing mar- 

ket with weights calculated using property characteristics 

from the American Housing Survey. Finally, it is seasonally 

adjusted and smoothed using a three-month moving aver- 

age. 13 

The ZORI has several advantages over other rent in- 

dexes. One advantage is that it is representative of the en- 

tire housing market, not just the multifamily market like 

data from CoreLogic and other sources. Compared to CPI- 

rents it is available at a more granular level and for a larger 

number of locations, and it is more high-frequency and 

less smoothed. We do expect the ZORI to closely match 

CPI-rents over long-time horizons when we consider the 

locations used to calculate CPI. To understand the implica- 

tions of our results for CPI, we will consider the effect on 

those locations explicitly. 

The ZORI includes rents for areas that include most of 

the U.S. population but it is still missing for many rural 

places; we infer what is happening in these places us- 

ing price data. To extrapolate rents for these locations, we 

run a cross-sectional regression of rent changes on price 

changes and take the fitted values wherever the ZORI is 

missing. Appendix Figure A2 shows rent changes and in- 

ferred rent changes for places with and without ZORI data. 

In general, places with missing rents data tend to have low 

population, and since our results are population-weighted, 

this procedure is unlikely to matter that much. 

Population changes come from Census and post of- 

fice change of address requests. The post office data is 

the result of a Freedom of Information Act request from 

Ramani and Bloom (2021) , and we clean the data in the 

same way as Ramani and Bloom (2021) . Specifically, we 

measure gross address changes in each ZIP code as the 

gross number of individual moves plus the gross number 

of households multiplied by 2.5. Net moves are the differ- 

ence between gross moves in and gross moves out. We ag- 

gregate moves at the ZIP level to the county level using 

a correspondence file from the Missouri Census Data Cen- 

ter. Finally, we adjust the population growth rate in all re- 

gions by a constant, to reflect the fact that the post office 

changes capture more outmigration than inmigration, and 

that the overall population grew slightly during this time 

period. We pick the constant to match the aggregate pop- 

ulation growth as estimated by the Census Bureau. 

We validate the use of the post office data by compar- 

ing it to a sub-time-period in which we can compare it to 

estimates from the U.S. Census. We do this in Appendix B. 
13 For more detail, see https://www.zillow.com/research/methodology- 

zori- repeat- rent- 27092/ . 

https://www.zillow.com/research/methodology-zori-repeat-rent-27092/
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Fig. 1. Panel A of shows the ZORI (Zillow Observed Rent Index) indexed to January 2020 dollars. Panel B shows the ZHVI (Zillow Home Value Index) 

indexed to January 2020 dollars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 We use binned scatter plots repeatedly through the paper to show 

data, since showing every county is too dense to read easily. A binned 

scatter plot sorts the data by the x -variable, and then splits them into an 

even number of bins. For each bin, it plots the mean of the x -variable 

against the mean of the y -variable. It is good for showing the conditional 

average value of the y -variable, given the x -variable, but does not give a 

sense of the variance of the y -variable. 
15 Papers documenting similar changes in the demand for density due 

to remote work include Delventhal et al. (2022) , Liu and Su (2021) , 

Gupta et al. (2021) , Brueckner et al. (2021) , Rosenthal et al. (2022) , and 

Ramani and Bloom (2021) . 
Data on remote work comes from Kolko (2020) . This

measure builds on the work-from-home propensity mea-

sure developed by Dingel and Neiman (2020) and is aggre-

gated to the county level using employment shares from

U.S. census data. 

We measure natural amenities using the natural ameni-

ties scale from the United States Department of Agricul-

ture Economic Research Service (2019) . The scale combines

six climate, topography, and water measures and is avail-

able at the county level. The highest-amenity places are

coastal areas with warm winters, and the lowest-amenity

places are flat, landlocked locations with extreme weather.

All nominal variables are deflated by CPI. 

3. Stylized facts 

This section reviews stylized facts about the time series

and cross-section of the U.S. housing market from 2020 to

2022. These facts are the main aggregate and regional pat-

terns that our model is intended to interpret. They will

also be a natural benchmark for comparison to the long-

run changes we discuss in Section 6 . 

3.1. Rent and population changes 

The first fact we document is the increase in real hous-

ing costs coinciding with the rise of remote work. Fig. 1

shows real rents and real house prices indexed to January

2020. Real rents rose by about eight percentage points,

with most of the change concentrated in early 2021. Real

house prices rose by about twenty-five percentage points.

The fact that rents and house prices rose at about the same

time suggests a role for an underlying shock affecting both

markets. 

Based on the timing of rent and price changes, we think

that changes during the COVID-19 pandemic increased de-

mand for housing. Possible reasons include both rising de-

mand for space due to remote work and an increased rate

of household formation. We think that remote work in-

creases demand for home offices ( Behrens et al., 2021;

Stanton and Tiwari, 2021 ) and raises the value of living

space if people spend more time there. For these reasons,

we think that remote work played an important role in

raising housing demand. 
170 
The second fact we document is changes in where peo- 

ple demanded housing. Demand shifted away from high- 

density, high price areas (like city centers) and towards 

lower-density, lower price areas, such as suburbs and rural 

areas. Fig. 2 provides evidence using price and population 

data. Panel (a) is a binned scatter plot of county-level pop- 

ulation changes from 2019 to 2021 against county popula- 

tion density. Panel (b) is a binned scatter plot of county- 

level real rent changes against population density. Panels 

(c) and (d) show population and rent changes respectively 

graphed against average rent levels from Zillow. 14 

Panels (a) and (b) provide evidence that housing de- 

mand shifted from dense central business districts (CBDs) 

to relatively suburban and rural areas. These figures are 

consistent with the evidence in several recent papers 

showing shifting demand away from city-centers. 15 Pop- 

ulation changes are U-shaped; populations fell the most 

in the densest and most expensive counties, but rose the 

most in areas with densities and rents near the middle of 

the distribution. This confirms the “donut” pattern docu- 

mented in Ramani and Bloom (2021) . As with the time 

series rise in rents, we might expect changes to housing 

demand to come either from the rise in remote work or 

from temporary pandemic-related factors. We find no ev- 

idence for a reversal in the location of housing demand, 

suggesting that temporary pandemic factors were not the 

main driver. 

Panels (c) and (d) of Fig. 2 show that the relative rise 

in demand for low-density areas also led to a rise in de- 

mand for cheaper areas. Rents rose by less in the highest- 

price, most dense areas. Rent data is not available in the 

lowest-density areas so the U-shaped pattern is not as pro- 

nounced in panels (c) and (d). The association between de- 

mand for low density and low-cost areas is not surpris- 
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Fig. 2. This figure shows binned scatter plots. Panels show the relationship between rent/population changes and population density (Panels A and B) and 

between rent/population changes and ex ante prices (Panels C and D). Plot created with 20 bins, which are weighted by 2019 county population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing, because rural areas tend to have lower rents. If living

near a central city is no longer desirable, the places people

move to will be cheaper. In addition, if remote work in-

creases demand for space, we would expect them to move

to areas where space is cheaper. What is more surprising

is that rents rose even in places where they were cheap

pre-pandemic (these places also have a high housing sup-

ply elasticity). 

3.2. Discussion 

The time series and cross-sectional changes shown in

Figs. 1 and 2 point to changes in housing demand dur-

ing the pandemic. The patterns in these figures motivate a

model which can capture different types of demand shocks

coming from the rise of remote work: first, a shock to de-

mand for location (i.e., location outside city center), and

second, a shock to housing demand, since people want big-

ger houses or want to form new households. 

Previous papers have already documented many of the

same facts, such as the shift in demand from central

cities to lower-density suburban areas. Our goal is to inter-

pret changes in rents and populations through a structural

model that allows us to make predictions for the long-run

effects of housing supply elasticity. To model these shocks,

we build on the long-run housing market model developed

in Howard and Liebersohn (2021) . 

The model in Howard and Liebersohn (2021) inter-

prets changes in rents, populations, and housing quantities
171 
using housing demand shocks, location demand shocks, 

and housing supply shocks. To capture the short-run dy- 

namics of the housing market from 2020–2022, we mod- 

ify this model by setting the housing supply elasticity 

to zero in the short run. Assuming that housing sup- 

ply is inelastic in the short run captures a key fact of 

the pandemic: housing prices rose everywhere, even in 

places where it used to be very easy to build. We think 

that inelastic short-run housing supply is a good approx- 

imation because the rise in rents—even in rural areas—

suggests that the housing supply could not accommo- 

date demand changes right away. Permitting can take 

years even in relatively flexible housing markets, and ev- 

idence from Glaeser and Gyourko (2006) shows that the 

construction sector generally responds to demand shocks 

with long lags. Supply chain disruptions during the pan- 

demic may also have made construction delays worse than 

otherwise. 

The first step in our analysis is to back out the shocks 

to location and housing demand using the structure of 

our model. The result is a location-specific housing de- 

mand and location demand shock implied by changes in 

rents and populations. In the long run, we think that hous- 

ing supply is somewhat elastic. To simulate the long-run 

effects of remote work, we consider the same shocks in 

a model where supply elasticities are their pre-pandemic 

long-run values. With the same location and housing de- 

mand shocks in the long-run version of model, we can cal- 

culate the net effects on real rents. 
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16 Howard and Liebersohn (2021) shows how to think about wages and 

amenities directly, but we bypass that for simplicity. As an example, if 

utility were Cobb-Douglas over housing consumption with housing share 

α and had an additive amenity term a i , then log v (u i , r i ) = u i − α log r i , 

where u i = log w i + a i . 
17 The real assumption is that the elasticity is constant. Once we have 

made that assumption, choosing −1 is a normalization. 
18 Howard and Liebersohn (2021) discusses x i as a function of wages, 

and other housing demand shifters, but we use x i as a summary measure 

for simplicity. For example, if housing demand were Cobb-Douglas with 

housing share α, then h i = x i /r i , where x i = αw i 

19 We assume that housing supplies are exogenous and fixed. We check 

to see if endogenizing the housing supply elasticities matters for our 

quantitative results in Appendix E. In particular, we allow elasticities to 

decrease as housing demand increases, in line with the negative cross- 

sectional relationship between rents and elasticities. The difference in re- 

sults is numerically negligible. 
One approach taken in the literature has been to run

reduced-form regressions of changes in housing costs (or

population) on regional characteristics. Reduced-form re-

gressions are insufficient if we want to make counterfac-

tual statements or understand the long-run effects of new

construction. One reason is that the long-run depends dif-

ferently on the different demand shocks which reduced-

form estimates cannot distinguish. For example, remote

work increases the demand for housing and lowers the at-

tractiveness of living in the CBD of major metros. Both of

these forces will cause people to move to more rural areas

where housing costs are lower. In the long run, this move-

ment will decrease rents because housing is more elastic

in cheaper, more rural areas. In addition, rents will fall as

supply is able to respond since supply everywhere is more

elastic in the long- than the short-run. 

We abstract away from the ultimate sources of location

and housing demand shocks, some of which have been

considered in the previous literature ( Davis et al., 2023;

Delventhal and Parkhomenko, 2020 ). The approach allows

for a model that is rich enough to capture the key housing

market changes that occurred during the pandemic, while

also providing intuitive formulas for the long-run effects of

remote work that we can derive analytically. At the same

time, the model is flexible enough to discuss how results

might be different under different assumptions about the

future of remote work, or with different assumptions about

the elasticity of housing demand. 

4. Model and calibration 

In this section, we modify the model from Howard and

Liebersohn (2021) to include both a short- and a long-run

component. The short-run version of the model assumes

the housing supply is inelastic everywhere whereas the

long-run version allows for location-specific housing sup-

ply elasticities. We show how to use the short-run model

to decompose the data into “shocks” to housing demand

and location demand, assuming that the housing supply

elasticity is zero everywhere. Then, using the long-run ver-

sion of the model, we derive formulas for the effect of the

shocks on housing costs in the long-run. 

This section lays out the framework to tell us how

to interpret the short-run data and calculate the long-

run equilibrium effects. In later sections, we will use this

framework, along with observed data from 2020–2022, to

estimate the long-run effects of the housing market shocks

of recent years. 

4.1. Model 

We consider a model of I discrete locations, indexed

by i , over three time periods, T = 0 , 1 , 2 , where T = 0 is

the pre-pandemic period, roughly early 2020, T = 1 is the

short-run, roughly early 2022, and T = 2 is the long-run.

A mass L of people, indexed by j, choose a location and a

housing quantity at time T = 0 . Housing is produced and

supplied according to a long-run housing supply curve. A

fraction of people adjust their location and housing quan-

tity at T = 1 , but the quantity of housing is held fixed.

In the long-run at T = 2 , everyone adjusts and housing is
172 
built along the original housing supply curve. For most 

of our analysis, we consider the log-differences between 

T = 0 and T = 1 , which we call short-run changes, or T = 0 

and T = 2 , which we think of as long-run changes. We typ- 

ically suppress the T notation for simplicity. 

Individuals choose location based on a location spe- 

cific utility—which incorporates wages and amenities—and 

the rent. They also receive a match-specific utility shock, 

which we assume is distributed as an i.i.d. Gumbel as is 

standard in the literature. 16 

 i j = v (u i , r i ) + ζi j 

where u i is a city-specific term that accounts for wages 

and amenities, and r i is the rent. v (·, ·) is decreasing in r i , 

and we assume that its elasticity is −1. 17 

Per-capita housing demand is then given by 

h i = h ( x i , r i ) (1) 

where x i is a housing demand shifter, such as wages or the 

demand for remote workspace. 18 We assume h (·, ·) is de- 

creasing in r i with a constant elasticity λ. 

In periods T = 0 and T = 2 , housing production is de- 

scribed by H i = Z 
1 

σi +1 

i 
X 

σi 
σi +1 

i 
, where Z i is local land and X i is 

the tradable good whose price is normalized to one. This 

defines a supply curve: 

log H i = σi log r i + constant i (2) 

Crucially, housing supply elasticity depends on i . 19 

Local housing markets clear, so the total amount of 

housing is the per capita housing times the population. 

H i = L i h i (3) 

Everyone must live in a city: 

L = 

∑ 

i 

L i (4) 

where L is the total population of the country. 

Because of the extreme value distribution, the popula- 

tion of a city at time T = 0 or time T = 2 is: 

L i = L 
v (u i , r i ) 

μ∑ 

k v (u k , r k ) μ

where 1 /μ is the scale parameter of the Gumbel distribu- 

tion. The summation in the denominator is over all cities 

in the economy. Taking the log of the previous equation, 

log L i = μ log v (u i , r i ) − ˜ u (5) 
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where ˜ u is defined as log 
∑ 

k v (u k , r k ) 
μ. Importantly ˜ u is an

endogenous object, but it does not depend on i . 

Eqs. (1) –(5) define the equilibrium at time T = 0 . For

time T = 1 and T = 2 , we consider deviations from that

equilibrium. 

First consider T = 2 , i.e. the long run. We take a log-

linearized approximation of the indirect utility around the

steady-state, as in Howard and Liebersohn (2021) : 

d log h i = −λd log r i + εi (6)

d log H i = σi d log r i + ξi (7)

d log L i = −μd log r i + ηi − d ̃  u (8)

d log H i = d log L i + d log h i (9)

d log L = 

∑ 

i 

L i d log L i = E d log L i (10)

where the expectation is initial-population-weighted. ηi is

a shock in location demand, εi is a shock to housing de-

mand, and ξi is a local shock to housing supply. λ is the

housing demand elasticity and μ is the location demand

elasticity. 20 We assume both elasticities are constant across

cities. These five equations are a housing demand (per

capita) curve, a housing supply curve, a location demand

curve, a housing market clearing condition, and a popu-

lation adding-up constraint. Note that the adding-up con-

straint is a log-linear approximation. 21 

With these equations, then for any set of shocks εi , ηi ,

and ζi , we can calculate the log change in rents, housing

quantities, and populations. 

The short-term, T = 1 , has a similar structure, but with

a couple of key differences. We assume that short-term

housing supply is fixed, and we allow only a fraction φ of

people to adjust the size or quantity of their housing in

response to the shocks. 22 The 1 − φ fraction of people that

cannot adjust stay in the same location and consume the

same amount of housing as they did at T = 0 . The hous-

ing market clearing condition, and the population adding-

up constraint are the same as in the long-run. The equa-

tions for T = 1 are: 

1 

φ
d log h i = −λd log r i + εi (11)

d log H i = 0 (12)
20 For the elasticity with respect to v (·, ·) to be μ (as in Eq. (5) ) and 

the elasticity with respect to r i to be −μ (as in Eq. (8) ), we make the 

assumption that the elasticity of utility with respect to rent is −1. This 

saves us a bit on notation. 
21 While there is error induced by the log-linear approximation, it is ap- 

proximately half of the variance of population changes in the counterfac- 

tuals, and empirically, it is quite small. 
22 Even though φ plays a similar role to λ and μ in the short-run, it 

does not appear in the equations governing the long-run, so in effect, it 

is governing how different the endogenous response of people can be in 

terms of how much they move. 
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1 

φ
d log L i = −μd log r i + ηi − d ̃  u (13) 

d log H i = d log L i + d log h i (14) 

d log L = 

∑ 

i 

L i d log L i = E d log L i (15) 

In contrast to the long-run equations, we will use these 

equations, along with data on population changes and rent 

changes to infer what the shocks εi and ηi − d ̃  u are in the 

short-run. We go into more detail in the following subsec- 

tions. 

4.1.1. Calculating shocks from the short-run model 

Using Eqs. (11) –(14) , we can use the short-run model 

to identify the shocks to housing demand and location de- 

mand (up to a constant): 

εi = − 1 

φ
d log L i + λd log r i (16) 

ηi = 

1 

φ
d log L i + μd log r i + d ̃  u (17) 

This is done by solving the system of linear equations for 

εi and ηi , so that it can be expressed in terms of observed 

moments of the data: the change in population and rents. 

4.1.2. Long-run effect of housing demand shocks 

If those same shocks persist into the long-run, we can 

estimate their effect on the long-run rents using a version 

of the model where the σi s are set to their long-run values. 

Define the Housing Demand Channel to be the difference 

in average rents at T = 2 , E d log r i , between an equilibrium 

with the εi shocks and an equilibrium where the εi shocks 

are all set to 0. 23 Then, for the housing demand shocks ε, 

their long-run effect on aggregate rents is: 

Housing Demand Channel = 

E 

εi 

λ + μ + σi 

E 

λ + σi 

λ + μ + σi 

(18) 

= − 1 

φ

E 

d log L i 
λ + μ + σi 

E 

λ + σi 

λ + μ + σi 

+ λ

E 

d log r i 
λ + μ + σi 

E 

λ + σi 

λ + μ + σi 

(19) 

where Eq. (19) comes from plugging Eq. (16) into Eq. (18) . 

Note that if μ = 0 , then (18) simplifies to E [ εi / (λ + σi )] , 

and if μ → ∞ , then (18) simplifies to E [ εi ] / (λ + σ̄ ) where 

σ̄ is the average of σi , weighted by population. 

Intuitively, the housing demand channel is larger when 

the shocks to housing demand, ε’s, are larger and smaller 

when housing demand or supply is more elastic. This ef- 

fect does not depend on how mobile people are across lo- 

cations if the demand shocks are uncorrelated to the hous- 

ing supply elasticities. To note, if population growth is zero 

and μ → ∞ , then the long-run effect of housing demand is 
23 The algebraic derivation for Eq. (18) can be found in Howard and 

Liebersohn (2021) . It is an algebraic rearrangement of Equs. (6) –(10) . 
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the initial rent increase times λ
λ+ ̄σ . This is the ratio of the

sum of the supply and demand elasticities in the short-

and long-run, which often shows up in applications of the

Le Chatelier (1884) principle. 

Similarly, define the Location Demand Channel to be

the change in T = 2 rents for a particular set of ηi shocks

as compared to all the ηi shocks being set to 0. 24 This is

given by: 

Location Demand Channel 

= 

1 

E 

λ + σi 

λ + μ + σi 

Cov 
(

1 

μ + λ + σi 

, ηi 

)
(20)

= 

1 

φ

1 

E 

λ + σi 

λ + μ + σi 

Cov 
(

1 

μ + λ + σi 

, d log L i 

)

− 1 

E 

λ + σi 

λ + μ + σi 

Cov 
(

λ + σi 

μ + λ + σi 

, d log r i 

)
(21)

The location demand channel depends on the covari-

ance of the location demand shocks with an expression

that depends on the local housing supply elasticity. 25 If the

location demand shocks are larger in places with higher

elasticities, that will have a negative effect on average

rents. 

Note that as μ → ∞ , Eq. (21) simplifies to

−Cov (σi , d log r i ) / ( ̄σ + λ) . And if μ = 0 , then the location

demand channel simplifies to Cov ((λ + σi ) 
−1 , d log L i ) /φ.

This is because when μ is large, the location demand

shocks are reflected in the rent changes of a place,

whereas when μ is small, the population changes are

the primary way to measure location demand shocks. In

either case, if people want to move to more housing-

supply-elastic places, that causes overall housing costs to

fall. 

4.2. Calibration of model parameters 

In the next section we will use the formulas from the

model to back out the location demand shocks ηi and

housing demand shocks εi . The formulas used to calculate

the shocks depend on housing demand elasticities. Here,

we discuss the sources of these and other parameters, their

interpretation, and the range of estimates that we think are

reasonable. 

4.2.1. Location demand elasticity μ
The parameter μ governs how sensitive people are to

the price in a particular location. A large value of μ de-

creases agents’ location-specific preference and results in
24 As with the Housing Demand Channel, the algebraic derivation for 

Eq. (20) can be found in Howard and Liebersohn (2021) . It is again an 

algebraic rearrangement of Eqs. (6) –(10) . Equation (21) comes from plug- 

ging Eq. (17) into Eq. (20) . 
25 In the short run, the housing supply is zero everywhere, so there can 

be no net movement to places with a more elastic housing supply. This 

means that the location demand channel is zero on average. This is ap- 

parent in Eq. (20) because when we plug in a zero for σi everywhere, the 

covariance is zero, and the location demand channel evaluates to zero. 
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a more elastic location demand. At one extreme, μ = 0 

would imply that households’ location demand is perfectly 

price inelastic. In this scenario, changes to location demand 

are reflected in population changes only. At the other ex- 

treme, μ → ∞ implies that households are perfectly elas- 

tic to price changes. Previous papers in the tradition of 

Rosen (1979) and Roback (1982) make this assumption 

implicitly by equalizing utility across space. When μ → 

∞ , shocks to location demand are reflected in the cross- 

section of real rent changes. 

The literature proposes a variety of values for μ, 

nearly all above one and many as high as infinity. 26 We 

use μ = 1 . 07 , following Hsieh and Moretti (2019) and 

Parkhomenko (2020) . 27 We will show that ultimately the 

estimates depend very little on the particular value of μ
that we choose for the calibration. 

4.2.2. Housing demand elasticity λ
The housing demand elasticity tells us how much hous- 

ing demand declines as a function of housing costs. At 

one extreme of the literature, λ = 1 corresponds to Cobb- 

Douglas demand, so households spend a constant portion 

of their income on housing in each city, regardless of the 

price. At the other extreme, λ = 0 would imply unit hous- 

ing demand, so housing quantities do not change with 

price. 

We use λ = 

2 
3 as our benchmark value, based on an es- 

timate from Albouy et al. (2016) . We discuss how impor- 

tant the value of λ is in this setting in Section 6.2 . 

4.2.3. Mobile share of households φ
The parameter φ governs the fraction of households 

that are allowed to adjust their housing in the short run. 

If φ = 1 , all households adjust their housing and location 

based on their demand shocks and the rent changes. If φ
is small, the model will interpret the same data as com- 

ing from a larger underlying shock but where fewer house- 

holds are allowed to move. In this case, the long-run ef- 

fects of the shock may be larger than the short-run. 

We think φ is the hardest parameter to calibrate be- 

cause there is little evidence about it. We view differ- 

ent values of φ as making different predictions about the 

future of remote work. Ozimek (2022) provides survey 

evidence from November 2021 that four times as many 

households plan to move because of remote work as were 

able to. If all these households end up switching to work- 

ing remotely and that none did between November and 

February, it will imply that φ = 

1 
4 . Therefore, as our bench- 

mark we take φ = 

1 
2 , which we consider conservative rel- 

ative to the survey results. We also consider other values 

of φ as a way to explore the range of possible effects that 
26 See Table 1 of Howard and Liebersohn (2021) for a review of different 

values of μ and λ. Fajgelbaum et al. (2019) Table A.17 also provides esti- 

mates of a related elasticity: the elasticity of labor supply with respect to 

wages, for which our calibration of μ is roughly consistent. 
27 Hsieh and Moretti (2019) use a population elasticity to wage 1/0.3 

and a consumption share of housing of 0.32 in a Cobb-Douglas frame- 

work. This implies a population elasticity to rent that is the product of 

the two. Parkhomenko (2020) uses the same calibration as Hsieh and 

Moretti (2019) . 
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Table 1 

Main Results. 

(1) (2) (3) (4) (5) (6) 

Region Short Run Total Short Run Location 

Demand 

Short Run Housing 

Demand 

Long Run Total Long Run Location 

Demand 

Long Run Housing 

Demand 

μ= 1.07 

National .07 0 .07 .015 −.003 .018 

CPI Cities .056 −.012 .068 .009 −.01 .018 

Expensive Metros .012 −.06 .072 −.013 −.035 .022 

μ= 100 

National .07 0 .07 .013 −.003 .016 

CPI Cities .056 −.014 .07 −.001 −.017 .016 

Expensive Metros .012 −.058 .07 −.044 −.06 .016 

Baum-Snow & Han Elasticity 

National .07 0 .07 .037 −.003 .041 

CPI Cities .056 −.012 .068 .025 −.014 .039 

Expensive Metros .012 −.06 .072 −.007 −.05 .043 

Location Demand Projected Onto Remote Work Measure 

National - 0 - - −.001 - 

CPI Cities - −.007 - - −.004 - 

Expensive Metros - −.057 - - −.032 - 

Notes: This table shows the main results, as well as alternative calibrations for the model. The numbers represent the percentage point change in rents 

relative to February 2020. λ is the housing demand elasticity, how much demand for housing demand declines as a function of costs. φ is the share of 

households who want to migrate who are actually able to migrate in the short run. μ is the location demand elasticity, how sensitive people are to prices 

in each location. The benchmark calibration uses λ = 2 / 3 and φ = 0 . 5 . The first two sections show calibrations for μ= 1.07 (as in Hsieh and Moretti 2019 

and Parkhomenko 2020 ) and μ= 100 (as in Howard and Liebersohn 2021 ), respectively. The third section shows Baum-Snow and Han (2022) Elasticity with 

μ= 1.07. The fourth section uses a projection of η onto the remote work measure with μ= 1.07. CPI cities include all Metropolitan Statistical Areas which 

are used to calculate CPI. Expensive metros are the counties in the New York, San Francisco, San Diego, Seattle, and Boston Metropolitan Statistical Areas. 

Within each category, the average is taken by 2019 population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

remote work might have. Overall, we think that φ between
1 
4 and 1 may be possible. 28 

4.2.4. Housing supply elasticities σi 

The parameter σi , which varies by location, governs

the long-run housing supply elasticities of each individual

county. As discussed in Section 2 , we base our calibration

on Baum-Snow and Han (2022) , which estimates 10-year

elasticities at the Census-tract level. We aggregate them

up to county-level by taking the average elasticity within

a county, weighted by the quantity of housing. 

However, for a slowly depreciating asset like housing,

10-year elasticities are not the same as long-run steady-

state elasticities, which we require for the model. Consider

the following housing production function, in which hous-

ing depreciates at rate δ and σi governs the short-run in-

vestment elasticity: 29 

H it = (1 − δ) H it−1 + Z i p 
σi 

it 

where p it is the price of housing, which (in the long-run

steady-state of some models) is proportional to rents. In

this case, the long-run elasticity of housing supply—the

quantity we are interested in—is σi . However, what would

be measured as a ten-year elasticity is (1 − (1 − δ) 10 ) σi . 
30 
28 An alternative lower-bound for φ is the share of people that did move 

during the time period. About 10 percent of Americans move every year, 

so a reasonable lower bound might be about 20 percent. 
29 A similar equation is used in a discrete-time infinite horizon model 

in Appendix C that nests our simple three-period model, so we can think 

of this calibration exercise as making the calibration of σi consistent with 

our model. 
30 This formula is a log-linearization. We show the derivation in Ap- 

pendix C.2. 
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So, for our baseline calibration, we use 

σi = σBaum-Snow and Han (2022) 

1 

1 − (1 − δ) 10 

We calibrate δ = 0 . 03636 , based on the depreciation rate 

in the U.S. tax code, but which is also similar to esti- 

mates in Glaeser and Gyourko (2005) . 31 Doing the arith- 

metic, this means we multiply the elasticities from Baum- 

Snow and Han (2022) by 3.23. However, so that read- 

ers can understand the implications of this assumption, 

we also present our results using the unadjusted Baum- 

Snow and Han (2022) elasticities throughout the paper, 

which are qualitatively similar to our main results. 

5. Effect of remote work on housing demand 

With the calibrated parameters we could, in principle, 

use Eqs. (19) and (21) in order to estimate the size of the 

housing demand channel and the location demand chan- 

nel without estimating any shocks; however, we think it 

is helpful to first describe the estimated housing demand 

shocks, εi , and the location demand shocks, ηi , and then 

estimate the magnitudes of the channel to better under- 

stand the intuition behind the two channels. We do this in 
this section. 

31 Glaeser and Gyourko (2005) give different depreciation rates for each 

decade from 1920 to 20 0 0, ranging from 0.02 to 0.113. However, six out 

of eight of them are between 0.02 and 0.048. They also estimate depreci- 

ation over multiple decades and find lower numbers, ranging from 0.016 

to 0.039. Our calibration of 0.03636 is within the range of their values, 

on the slightly higher end, leading to more conservative estimates of the 

long-run differences. 
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Fig. 3. Binned scatter plot the relationship between real rent changes and housing supply elasticity (Panel A) and between population changes and housing 

supply elasticity (Panel B). Plot created with 20 bins and weights by 2019 county population. Source: Authors’ calculations using data from Zillow and USPS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Demand shock estimates 

Location demand shocks ηi Equation (17) shows that lo-

cation demand shocks are equal to a linear combination

of rent changes and population changes. To estimate the

relative location demand shock for a given county, we

need data on both the rent change and the population

change. 

Anticipating the way that we will use them, we know

that the important statistic will be the covariance of the lo-

cation demand shocks with a function of the local housing

supply elasticity, and therefore the relationship between

rent or population changes and local supply elasticities will

matter. 

We show a scatter plot plotting the relationship be-

tween housing supply elasticity and both rent changes and

population changes in Fig. 3 . Panel (a) of Fig. 3 shows the

relationship between rent changes and elasticity using a

binned scatter plot. Rent increased the least in areas where

housing is the most inelastically supplied. For μ → ∞ , lo-

cal rent changes are equivalent to location demand shocks.

For smaller values of μ, population changes matter as well.

The relationship between population changes and hous-

ing supply elasticity is shown in Panel (b). Again, there

is a positive relationship between population changes and

housing supply elasticity. 

Each location’s location demand shock is a linear com-

bination of the rent changes and population changes in

Panels (a) and (b). For higher values of μ—the elasticity

of population to rents—the location demand shock will be

more similar to the rent changes. Importantly, for any pa-

rameter combination, location demand is increasing more

in areas that are more housing-supply elastic. 

Housing demand εi Like for location demand, housing

demand can also be calculated based on observed rent

and population changes. Equation (19) tells us that we

should care about the average values of the housing de-

mand shocks. This focus is different than location demand

shocks, where we anticipated being interested in the cross-

sectional variation. 

The rise in real rents from February 2020 to Febru-

ary 2022 was about 8 percentage points and U.S. popu-
176 
lation growth was 0.5 percentage points. Assuming λ = 

2 
3 and φ = 

1 
2 , this implies an average housing demand 

shock (i.e. ε) of.043 ( Eq. (16) ). This means that in par- 

tial equilibrium—i.e. if housing costs had stayed the same—

people would have consumed an average of 4.3 percent 

more housing because of the ε shocks. 

5.2. Relation to remote work measures 

We now take a brief digression to discuss the relation 

of the estimates of location demand—the ηi ’s—to observ- 

able measures of remote work. A reader that is impatient 

to find out the magnitudes of the location demand chan- 

nel and the housing demand channel may wish to skip to 

Section 6 , and come back to this discussion later. 

Up to this point, we estimated the location demand 

shocks and the housing demand shocks without regard 

to their origins. Given that one of the major changes in 

the economy during this time was the rise of remote 

work, we want to investigate how related the estimated 

shocks—particularly the location demand shocks—are to re- 

mote work variables. One reason to suspect that they are 

closely related is the findings of previous papers such as 

Gupta et al. (2021) and Ramani and Bloom (2021) . In this 

section, we show additional evidence that location demand 

rose in areas we would expect, using proxies for remote 

work developed in the literature. 

Specifically, we show that the ηi ’s we estimate are lo- 

cated where remote work is possible. To do this, we project 

the rent and population changes on several observable 

measures related to remote work, including both vulner- 

ability to remote work in each county itself as well as in 

nearby counties (to account for spillovers). 

Our main measure is the remote work feasibility mea- 

sure developed by Dingel and Neiman (2020) , which cal- 

culates the feasibility of remote work by profession. We 

aggregate it to the county level to measure the remote 

work vulnerability of each region. Because demand for re- 

mote work spills over across counties, we include variables 

measuring the remote work share in neighboring coun- 

ties at various distances. We also include measures of rel- 

ative housing costs because workers tend to move towards 
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relatively cheap areas in their vicinity. Finally, to account

for the fact that households moved to areas with nicer

amenities, we interact house prices with a natural ameni-

ties measure from the USDA. 

We project the components of location demand (i.e.,

population changes and rent changes) onto remote work

variables by running the following regression: 

y i = β1 WFH i + β2 a i + β3 log (p i ) + β4 a i log (p i ) 

+ 

∑ 

{ d} 

[
β5 d WFH id + β6 d px id + β7 d WFH id px id 

]
+ εi (22)

where WFH i is the remote work vulnerability in loca-

tion i , a i is the level of amenities, p i is the house price, and

y i is the population or rent growth from February 2020 to

February 2022. We include lower-order terms in addition

to interaction terms. For a given distance d, WFH id is the

average remote work vulnerability for counties within d

miles and px id is the log house price minus the population-

weighted average log house price of counties within d

miles. To non-parametrically estimate the effects of remote

work, we allow the effects to vary at different distances

by estimating Eq. (22) with d = 25 , 50 , 100 , 250 , 500 miles.

The main reason we consider these spatial patterns is be-

cause we think people are likely to commute to nearby lo-

cations ( Monte et al., 2018 ). With remote work, those com-

mutes may be less frequent and allow people to live at a

fairly large distance to their job. 32 

Estimates show that location demand is very much

related to remote work. When we estimate specification

(22) using the location demand shock, we calculate an R 2

of 0.37 and an F-statistic of 84. 33 The WFH variation ex-

plains less than half of the change location demand, but

given the relative coarseness of the measure, we think this

is quite high. We also reject at the 1 percent level that the

changes are unrelated to WFH. 

Fig. 4 shows that the projection capture a lot of the

variation in location demand. 34 The top panel is a map

of the United States showing the real rent change at the

county level. The bottom panel is a projection of the real

rent change onto the remote work shock, estimated in

Eq. (22) . The maps look qualitatively very similar, the main

difference being that the projection is somewhat smoothed

out. This makes sense given that rents are noisy and that

our measures will not capture everything that is desirable

to remote workers. 

Eq. (22) is able to capture many of the features that

may be associated with remote work. As can be seen in

the figure, there are smaller rent predicted rent increases

in New York, Los Angeles, and San Francisco, with large in-

creases in the counties surrounding them. There are sig-

nificant increases in the South, particularly Florida, and in

California, which are high amenity regions. 
32 Another reason distance might matter is thinking about migration 

( Schubert, 2022 ). 
33 The coefficients from the regression are available in Table A1. How- 

ever since we allow the effects to vary at many different distances, many 

of the x -variables are highly correlated and so the coefficients are not eas- 

ily interpretable. 
34 Similar maps for rents and population changes are available in Ap- 

pendix Figures A3 and A4. 
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We can do a similar exercise using housing demand 

shocks to see if remote work variables are highly corre- 

lated to that. We run the same regression, but instead use 

the estimated ε’s from the model. Under our preferred 

specification, the R 2 is actually fairly small, around 0.06. 

More fundamentally, while the projection of location de- 

mand shocks are helpful to estimate the long-run effects of 

remote work, the formulas for the long-run effects of hous- 

ing demand rely on the average housing demand shock, 

not the cross-section. This regression does not help us un- 

derstand the average without stronger assumptions. 

6. Long-run effects of remote work 

Having discussed the demand shocks in the previous 

section, we are now ready to estimate the magnitudes of 

the housing demand and location demand channels in the 

long-run. 

6.1. Benchmark estimates 

Given the location and housing demand shocks from 

the previous section, we can estimate the location de- 

mand channel and the housing demand channel using 

Eqs. (18) and (20) . 

These results can be found in Table 1 . In our preferred 

calibration for the entire country (the first row), 35 the 

long-run location demand channel is −.003 log-points and 

the long-run housing demand channel is.018 log-points. 

The total effect is.015 log-points, meaning that the same 

housing and location demand channels that we measured 

in the short-run through the lens of our model will in- 

crease rents in the long-run by 1.5 percentage points. For 

comparison, these same effects had a 7 percentage-point 

impact in the short run, so the long-term impact is only 

about 20 percent as large as the short-run impact. 36 

In the next row, we show the same rent changes but 

for counties in which CPI is measured, which may be of 

interest since housing costs make up a large share of the 

consumption basket in CPI. The short- and long-run hous- 

ing demand channels are quantitatively similar, but there 

is a more negative location demand channel in both the 

short-run and the long-run, as these counties experienced 

negative location demand shocks compared to the rest of 

the country. In particular, this brings the long-run total to 

be less than.01 log-points. 

Finally, we also show the same numbers, but for just 

the five most expensive metropolitan statistical areas in 

our data: New York, San Francisco, San Diego, Seattle, and 

Boston. Again, the housing demand channels are compara- 

ble to the national average, but the location demand chan- 

nels are much more negative, meaning the long-run to- 

tal effect is actually a.013 log-point decrease in rents. Of 
35 Our preferred calibration is μ = 1 . 07 , λ = 2 / 3 , and the σi = 

3 . 23 σBaum-Snow and Han (2022) . 
36 All of the short-run impact is due to housing demand. The reason 

there is no location demand channel in the short-run is that all counties 

have a housing supply elasticity of zero, so there can be no movement to 

places with differential housing supply. The housing demand channel can 

change rents in any particular location, but the net effect summed across 

all locations will be zero. 
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Fig. 4. This figure shows location demand shocks and location demand projected onto remote work shocks. Panel A is a choropleth map showing the 

location demand at the county level. Panel B shows the location demand shock projected onto remote work measures estimated using Eq. (22) . The colors 

are on the same scale in both maps. 

 

 

 

 

 

 

 

 

 

course, there was a much smaller short-run impact as well,

with only a total effect of 0.12 log-points. This highlights

the cross-sectional heterogeneity of the impact of remote

work, with much different effects on average than in spe-

cific high-cost cities. 

The model can be solved for long-run rent and popula-

tion changes in every county. While we show the results

for the expensive metros in Table 1 , a reader may be in-

terested in other specific areas. For that reason, we have

included maps of the cross-section of effects that can be

found in Appendix D. 
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6.2. Alternative parameterizations 

We also present two alternative parameterizations in 

Table 1 for comparison. In the first, we use a much 

higher elasticity of population to rents, μ = 100 . This ap- 

proaches the Rosen (1979) - Roback (1982) benchmark of 

utility equalization everywhere. The results are quantita- 

tively similar for the entire country, with a difference of 

only.002 log points for the long-run housing demand chan- 

nel and no different for the long-run location demand 

channel. 
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38 Another way that we examine the robustness to alternative housing 

supply calibrations is to assume that housing supply elasticities elastici- 

ties decrease when housing demand increases, in line with the negative 

cross-sectional relationship between rents and elasticities. The results are 

numerically very similar. We show this in Appendix E. 
39 As λ gets close to zero, the magnitude of the effects does change dra- 

matically, largely because the interpretation of housing demand shocks 

changes. Since there was a small population increase during this time 

period, if we assume that the housing stock was fixed and that people 

did not adjust their housing size, the only possible way to clear markets 

would be to assume that housing demand fell. Given that this does not 

correspond to the general fact that remote work increased housing de- 

mand, it is an argument against very small values of λ. 
However, when we focus on CPI cities or Expensive

Metros, the location demand channel is more negative—

almost twice as large. This leads to a long-run total ef-

fect on CPI cities of around 0, and a long-run total effect

on expensive metros of −0.044 log-points. The reason for

this difference is that these areas had the largest negative

location demand shocks, so they must be offset by rel-

ative rent declines—even in the long-run—when utility is

equalized everywhere. When μ is much smaller, as in our

benchmark, then people moving into the city, as the hous-

ing supply grows, means that the marginal agent can still

be indifferent between the two cities with smaller rent ad-

justments. 

The similarity in results for different values of μ is per-

haps surprising, given that it does not hold generally, as in

Howard and Liebersohn (2021) ; therefore, it is worth dis-

cussing why that is the case. If μ → ∞ , then people are

very sensitive to rents, so local rents will adjust to offset

location demand changes and the outside option, d ̃  u . The

formula for the location demand channel is given by: 

Location Demand Channel = −Cov (ηi , σi ) 

σ̄ + λ

= −Cov (d log r i , σi ) 

σ̄ + λ
(23)

On the other hand, if μ = 0 , people do not move at all

in response to rents, and therefore all movements will be

governed simply by the location demand shock. In this

case, the formula is given by: 

Location Demand Channel = 

1 

φ
Cov 

(
ηi , 

1 

σi + λ

)

= 

1 

φ
Cov 

(
d log L i , 

1 

σi + λ

)
(24)

In the data, the quantity in Eqs. (23) and (24) are both

small in magnitude and negative. 37 Intuitively, this oc-

curs because the patterns of rent changes and population

changes are similar in the data. Inelastic places saw a rela-

tive decline in rents and in populations. While it is a coin-

cidence that the magnitudes end up being essentially the

same regardless of μ, it would be expected that the sign

would be negative based on easily observe aspects of the

data. 

The fact that μ does not greatly affect the housing de-

mand channel is less surprising. The measurement of de-

mand shocks using the short-run data does not depend on

μ, and the long-run effects of demand shocks are given

by: E [ 
εi 

σi + λ ] or 
E εi 
σ̄+ λ when μ is 0 or ∞ respectively. These

would differ only if the demand shocks and the housing

supply elasticity are correlated, and in the data, the de-

mand shocks are positive everywhere, not just in inelastic

regions. 

Finally, we wish to note that the effect on rents and

populations in individual cities are different as we change

the calibration of μ. It is only the average effect that is in-

sensitive to its parameterization. 
37 For intermediate values of μ, the effect is somewhere in between. 

179 
We also show the calibration with lower housing sup- 

ply elasticities, by using the unadjusted Baum-Snow and 

Han (2022) elasticities instead of the ones we adjusted for 

housing depreciation. Mechanically, the short-run results 

are the same as the benchmark, since the housing supply 

elasticity does not matter. In the long-run, the location de- 

mand effects are comparable, but the housing demand ef- 

fects are much larger; this is because there was a large in- 

crease in housing demand. If supply is constrained to react 

less, then the price will rise by more. The overall effect is 

a.037 log-points, which is a bit larger than the baseline es- 

timates, but still much smaller than the short-run effect. 38 

Besides the two alternative calibrations in Table 1 , we 

also show different parameter combinations of φ and λ
in Fig. 5 . We start by reiterating our result regarding μ. 

Even though there is very little agreement on the popula- 

tion elasticities to rent in the literature, the effects are not 

very different for extreme values of μ = 1 . 07 or μ → ∞ 

(here we show μ = 100 , but this is visually indistinguish- 

able from larger values of μ). 

Next, we discuss the sensitivity to λ. When λ = 0 , the 

size of house that people choose is completely inelastic 

to rent, and when λ = 1 , then it has unit elasticity. λ = 1 

is the most common parameterization in the literature, 

but largely due to tractability. When it is estimated as in 

Albouy et al. (2016) , the estimates are usually smaller than 

1. Our preferred estimate is λ = 2 / 3 . While the effects are 

a bit smaller for λ = . 5 and a bit larger for λ = 1 , the re- 

sults do not change much. 39 

Finally, we show results for different values of φ. 

Changing the value of φ from 

1 
2 to 1 has only a minor 

negative effect on the long-run effects. When we get to 

smaller values of φ, like 0.25, the effects become a bit 

smaller but are still qualitatively similar to our preferred 

estimates. 

Overall, we view our estimates as relatively robust to 

different parameterizations. 40 

6.3. Location demand channel projected onto remote work 

variables 

In the previous section, we showed that observed loca- 

tion demand shocks were related to variables we expected 

to be related to remote work. If we wish to consider only 

the effects of the location demand shocks that project onto 
40 In appendix A, we show that the parameters also do not affect the 

short-run values too much. In particular, under our preferred parameteri- 

zation, the short-run effect of the housing demand channel is.07, and the 

short-run effect of the location demand channel is 0. 
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Fig. 5. This figure shows the long-run average effects of housing demand and location demand on house prices. The two figures side-by-side consider 

different and extreme values of the location demand elasticity, μ, with μ → ∞ representing an extremely high elasticity to move in response to a rent 

change. λ, on the x-axis is the housing demand elasticity. φ, represented by different styles of line within the figure, represents the share of people who 

adjust their housing and location consumption in the short-run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these variables, we can revisit the analysis by using those

shocks instead. 

To carry out this analysis, we use the predicted val-

ues of location demand shocks from the previous section,

rather than the observed location demand shocks from the

data. Plugging in the numbers, the long-run effects of re-

mote work are −.001 log-points from location demand.

Numbers for CPI Cities and Expensive Metros can be found

at the bottom of Table 1 . This is about 40 percent of the

size of the location demand channel that we calculated as-

suming all relative rent changes are the result of remote

work. 

We cannot do the same for housing demand shocks.

The reason for this is that a cross-sectional regression only

identifies the relative housing demand shocks correlated

to remote work variables. This is fine for location demand

shocks, since relative location demand shocks are what

matters, but the formula for housing demand shocks de-

pends on the average, which we cannot identify off of

cross-sectional regressions. 

6.4. Comparison to house prices 

To this point in the paper, we have only considered the

effect of the remote work shock on rents and populations.

However, a reader might reasonably be interested in how

the remote work shock affected house prices for two rea-

sons: first, because house prices are inherently interesting;

and second, because it might serve as a robustness check

for the model. 
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The model we presented in Section 4 did not include 

house prices and because of its simplicity, there is no ob- 

vious way to solve for house prices. In order to make 

progress on this point, we write down a discrete-time dy- 

namic model that features house prices. Importantly, this 

new model nests the previous model, in the sense that pe- 

riod 0 and period 1 are the same, and the steady-state of 

the new model is the same as period 2 in the previous 

model. 

The key features of the model that were not present 

in the simpler model from Section 4 are: (1) house prices 

are the present discounted value of rents; (2) housing de- 

preciates each period and is replenished through housing 

investment that depends on house prices; (3) housing in- 

vestment is subject to a time-to-build constraint; and (4) 

people re-optimize their housing consumption and loca- 

tion with a certain probability each period. Details can 

be found in Appendix C. Compared to models such as 

Favilukis et al. (2023) , our model is relatively simple. For 

example, the agents in our model do not make forward- 

looking tenure choices. The main reason for variation in 

the price-to-rent ratio is changes in the interest rate, which 

is an important margin we hope to capture; however, this 

means that we do not capture much of the location varia- 

tion in the price-to-rent ratio as confirmed by our empiri- 

cal estimates. 

Because the dynamic model nests the two time periods 

from the simple model as the initial shock and the long- 

run steady-state, the main “new” aspect of the dynamic 

model is that it is able to solve for the transition dynam- 
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Table 2 

House Price Results. 

(1) (2) (3) (4) (5) (6) 

Data (OLS) Data (2SLS) Baseline μ= 100 Interest Rate Shock Baum-Snow and Han 

Rent Growth, Feb 2020–22 0.845 ∗∗∗ 0.998 ∗∗∗ 0.763 ∗∗∗ 0.993 ∗∗∗ 0.711 ∗∗∗ 0.899 ∗∗∗

(0.037) (0.045) (0.001) (0.000) (0.002) (0.001) 

Constant 0.145 ∗∗∗ 0.133 ∗∗∗ −0.0128 ∗∗∗ −0.0298 ∗∗∗ 0.154 ∗∗∗ −0.00857 ∗∗∗

(0.004) (0.005) (0.000) (0.000) (0.000) (0.000) 

Observations 490 483 2736 2736 2736 2736 

R 2 0.519 0.501 0.995 1.000 0.968 0.999 

Average House Price Change 0.194 0.194 0.040 0.040 0.203 0.054 

The first two columns present show a regression of house price changes from Feb. 2020 to Feb. 2022 on rent changes over the same time period. Column 

(1) regresses Zillow house price changes on Zillow rent changes. Column (2) regresses Zillow house price changes on Zillow rent changes, using Costar rent 

changes as an instrument. Columns (3)-(6) show the model-implied house price changes on the data, under a variety of parameterizations. The baseline 

model is presented in Appendix C, and features house prices as the present discounted value of future rents, and slowly depreciating housing. We also 

consider a variety of alternative specifications. Column (4) assumes that μ = 100 instead of μ = 1 . 07 in the baseline simulation. Column (5) assumes that 

in addition to the housing demand and location demand shocks in our baseline model, that the economy is also hit with an interest rate shock, in which 

rates fall. Column (6) assumes that instead of our σi being the elasticities measured by Baum-Snow and Han (2022) times 3.23 as discussed in Section 4.2 , 

that the σi are the Baum-Snow and Han (2022) elasticities without any adjustment. All regressions are weighted by 2019 populations. Robust standard 

errors in parentheses. ∗ p < 0 . 05 , ∗∗ p < 0 . 01 , ∗∗∗ p < 0 . 001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ics of rents, housing quantities, and populations. Solving

for the transition dynamics of rents is particularly impor-

tant because it allows us to calculate house prices as the

present discounted value of rents. Since solving for house

prices was the goal of the model, this is a crucial step. 41 

In the long-run steady-state of our model, house price

and rent changes converge to the same values locally. If

county A had an x log-point increase in rents, then county

A’s house prices also increased by x log-points. Hence, all

the results we had previously shown for the long-run ef-

fects of remote work on rents would also apply as the

long-run effects on house prices. 

More interesting are some of the results regarding

short-run house prices. While the model is not simple

enough to solve in closed form for house prices, it is still

easily linearizable, and we use Dynare ( Adjemian et al.,

2011 ) to solve for the short-run impact on house prices,

which we can compare to the data. Since we use rents and

not house prices to estimate the location and housing de-

mand shocks, comparing the data and model predictions

can serve as a check of the validity of the model, or show

us what features might be missing from the model that are

important for house prices in particular. 

To analyze the effects on house prices, we regress

the short-run changes in house prices on the short-run

changes in rents. We can do this using both the model and

the data, since the short-run changes in rents are the same

in both the model and the data. 

The results of this exercise are presented in Table 2 . In

column (3), we show a regression of house prices on rents,

in our baseline calibration of the model. The regression co-

efficient is about 0.76 and the R 2 is above 0.99. This means

that places that had larger increases in rents also had a

higher increase in model-implied house prices, although

the effect was not quite one-for-one. This coefficient being
41 The transition dynamics themselves are not particularly interesting 

and behave as one might expect, with an initial impulse, followed by 

roughly exponential convergence to the new steady-state. While the full 

dynamic model is needed to calculate house prices, the dynamics them- 

selves are largely uninteresting and are not the focus of our paper. 
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less than one is because people have strong idiosyncratic 

preferences over location, and so as more people move to 

the places that had rent increases in the long run, the rela- 

tive rent changes need to be less big to make the marginal 

person indifferent. We can confirm this intuition by con- 

sidering an alternative calibration where μ = 100 and we 

see a coefficient on house prices of almost exactly 1. 

How does this compare to the data? In column (1), 

we run the same regression of house prices on rents (ex- 

cluding the counties for which we infer rents from house 

prices). We get a coefficient that is quite high, 0.845, which 

is a bit larger than our baseline specification, but still less 

than 1. 

One concern with the regression in column (1) is mea- 

surement error. 42 If there is classical measurement error, 

we can correct the regression coefficient using instrumen- 

tal variables, where the instrument is another estimate of 

rent changes that is uncorrelated to the measurement er- 

ror of Zillow. We use an estimate of the rent changes from 

Costar as our instrument. The F-statistic on the first-stage 

regression is above 300. The point estimate of the two 

stage least squares regression, shown in column (2), is al- 

most exactly 1, although with wide standard errors. 

We also consider an alternative calibration of the model 

in column (6), using the unadjusted ( Baum-Snow and 

Han, 2022 ) housing supply elasticities. Here, the coefficient 

is larger than in our baseline model, near the OLS, but still 

below 1. 

Given that the across all four columns (1)–(4) and (6), 

there is a very high coefficient less than 1 when regress- 

ing house prices on rents, we think the model is generally 

consistent with the data with regards to the cross-sectional 

predictions regarding house prices. 

However, there is another major difference between the 

data and the baseline model, which is that house prices 

in the data increased by a significant amount compared to 

house prices in the model. To see this, compare the aver- 
42 Measurement error may also explain some of the lower R 2 , although 

we also would attribute the R 2 < 1 to county-specific factors in prices and 

rents. 
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age house price change in columns (2) and (3). While the

regression is limited by the number of counties for which

we observe rent, the average house price change at the

bottom of the table is for a consistent sample of counties.

In the data, house prices rose by nearly 20 percent, while

the model has only a small increase. 

The model predicts short-run house prices should rise

less than short-run rents because long-run rents rise less

than short-run rents, and house prices depend on both

short-run and long-run rents; therefore, the data strongly

suggests our dynamic model is missing something. 43 A

natural candidate for what the model might be missing

is a change in the interest rate. In column (5), we add

an interest rate shock to the model which is described

in Appendix C. With the interest rate shock, the cross-

sectional predictions of the model do not change much—

the regression coefficient is still about three-quarters, and

the R 2 is still close to 1—but the constant term is much

closer to the one in the data. Admittedly, we impose a

larger interest rate shock than is observed in the data,

but our main point is that the constant term may react

to changes in credit markets, of which there were many

between February 2020 and February 2022; therefore, the

different constant terms should not be taken as a rejection

of the model. 

6.5. Cross-sectional effects on population 

Our model also has implications for which regions

will gain and lose population in the long-run. In the

long-run, housing supply adjusts to changes in location

demand, which increases the equilibrium population in

places where housing supply increases. We show the long-

run effects on populations, by bins of housing supply elas-

ticity in Fig. 6 . The figure shows the average population

growth in response to the location and housing demand

shocks, for counties binned by housing supply elasticity.

The most inelastic counties lost population in the short-

run, and are predicted to lose even more population in the

long-run. The most elastic counties gained population in

the short-run, and those effects are also expected to be

larger in the long-run. 

Under other parameterizations, the population predic-

tions may be more or less extreme. Intuitively, when μ →
∞ , people are more mobile in response to rent changes,

and there should be more long-run population movements.

Similarly, when housing supply is less elastic (i.e. when we

use the unadjusted ( Baum-Snow and Han, 2022 ) elastici-

ties), then there will be less long-term population move-

ment since the housing supply will adjust less. 

We can also calculate how the house price or the hous-

ing supply elasticity of the average American will change

in both the short- and the long-run. In 2019, the average
43 One possibility would be that there was significant substitution 

between owner-occupied housing to rental housing ( Halket et al., 

2020; Gete and Reher, 2018; Greenwald and Guren, 2021 ). However, 

Loewenstein and Willen (2023) establishes that prices on rental housing 

moved in similar ways to prices on owner-occupied housing. Hence, we 

do not focus on theories of owner-occupied and rental housing substitu- 

tion, but rather, we focus on explaining house price movements that are 

the result of changes in the future rents or discount factors. 
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American lived in a county that had a 0.688 supply elastic- 

ity (using the ( Baum-Snow and Han, 2022 ) measure), had a 

Zillow home value index of $309,987, and had a population 

density of 1659 people per square mile. The short-run ef- 

fect of population changes was to change those numbers to 

0.690, $308,129, and 1597 people per square mile, respec- 

tively. But the long-run effect of these shocks is that peo- 

ple will move to places that had 0.695 elasticity, $303,772 

Zillow home value index, and 1480 people per square mile 

in 2019. 44 The long-run effect on population movements 

is that the average American lives in a county that is 1.0 

percent more elastic, 2.0 percent cheaper, and 10.2 percent 

less dense in 2019. This is in addition to the fact that we 

expect housing costs to increase by 1.5 percentage points 

on net, and that outmigrants will affect the density of the 

densest places. 

6.6. Scenarios for the future of remote work 

To this point, our assumption has been that the model- 

implied shocks to housing demand and location demand 

were fully realized and permanent, and we have used the 

lens of the model to extrapolate what the long-term ef- 

fects of those shocks were. As with any predictive exer- 

cise, a reader may disagree on the expected future path 

of the housing and location demand shocks. Our model 

is tractable enough that it is relatively straightforward 

to map different assumptions about the future of remote 

work onto the predictions. 

In this section, we consider a few different ones: first, 

we ask what happens if the housing demand shocks are 

more temporary because they were actually due to factors 

other than remote work; and second, we ask what hap- 

pens if remote work continues to evolve and the shocks 

are larger in the long-run. Finally, we ask what happens if 

remote work not only becomes more important, but also is 

no longer tied at all to office location, and there is an even 

bigger shift to high-amenity low-rent places. All of the re- 

sults are presented in Table 3 . 

6.6.1. How much of housing demand is remote work? 

While Section 5.2 argues that the majority of the lo- 

cation demand channel is driven by observable variables 

that relate to remote work, we cannot make a similar ar- 

gument regarding the housing demand channel. The reason 

for this is that the location demand channel relies on the 

cross-section of location demand shocks, so only the rel- 

ative exposure to remote work matters, which is what we 

can identify in a regression. In contrast, calculating the size 

of the housing demand shocks requires taking a stand on 

their absolute size, which we cannot do without auxiliary 

assumptions. 

It makes sense to consider the long-run if the housing 

demand changes that we have observed over the last few 

years are due to temporary factors,such as expansionary 

fiscal policy that has spurred spending on durable goods. 
44 Importantly, this is not a claim about the direction that house prices 

will move—as in it should not matter for calculating a price index—but is 

a helpful summary statistic for understanding the movement of popula- 

tion. 
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Fig. 6. A binned scatter plot of the short- and long-run population changes due to housing and location demand shocks, by housing supply elasticity. 

Table 3 

Alternative Scenarios. 

(1) (2) (3) 

Region Total Location Demand Channel Housing Demand Channel 

Baseline 

National .015 −.003 .018 

CPI Cities .009 −.01 .018 

Expensive Metros −.013 −.035 .022 

60% Housing Demand 

National .008 −.003 .011 

CPI Cities .001 −.01 .011 

Expensive Metros −.022 −.035 .013 

700% Location Demand 

National −.001 −.019 .018 

CPI Cities −.049 −.068 .018 

Expensive Metros −.224 −.246 .022 

200% Amenities 

National .014 −.003 .018 

CPI Cities .006 −.012 .018 

Expensive Metros −.02 −.042 .022 

Notes: Estimates correspond to alternative scenarios considered in Section 6 . See text for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If none of the housing demand shocks are due to re-

mote work, then the long-run effect of remote work is

simply the location demand channel, a 0.003 log-point de-

crease in rents. The linearity of our model helps calculate

intermediate values as well. If x percent of the housing de-

mand shocks are due to remote work, then the total effect

will be 0.015 times x percent. If you think only 20 percent

is due to remote work, you would believe that the net ef-

fect is 20 percent times 0.015, plus the location demand

channel, for a net effect very close to zero. If you think

that 60 percent of the increase in recent house prices is

due to remote work (as in Mondragon and Wieland, 2022 ),

you would think the net effect is 0.009, plus the location

demand channel, for a net effect of 0.006. 

6.6.2. Expansion of remote work 

Our location demand channel also scales linearly with

the size of the shock. If we wish to consider a world in
183 
which the relative location demand shocks increase by a 

factor of 7, we can do that. In this case, we simply multi- 

ply the location demand channel by 7, yielding a location 

demand channel of 0.019, which would make the net effect 

basically zero. In this scenario, the location demand effect 

for CPI rents and aggregate rents is also multiplied by a 

factor of 7. 

6.6.3. Greater flexibility of location demand 

When projecting the changes in rents onto remote work 

variables, it is clear that high-amenity, low-rent places saw 

increases in location demand in the short-term. One possi- 

ble counterfactual is to consider that if remote work be- 

comes even easier, people will move even further from 

their jobs and into high-amenity places—especially those 

high-amenity and low-rent places. 

Regression (22) showed that higher-amenity places 

(and particularly higher-amenity places with lower house 
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prices) had larger location demand shocks. If we take those

coefficients to be causal and double the impact of the

amenities by doubling those coefficients while leaving ev-

erything else the same, then we can recalculate the long-

run effects using those new shocks. The location demand

channel becomes more negative modestly, with slightly

larger effects for CPI cities and Expensive Metros. This can

be seen in the last panel of Table 3 . 

7. Conclusion 

In this paper, we compare the short- and long-run

effects of remote work, using a simple model of hous-

ing markets within the United States. We show that even

though remote work has increased rents in the short-run,

they are likely to decline going forward and in the long-

run may end up lower than pre-pandemic. 
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